tgb.utils
clean_rows(fname, outname)
clean the rows with comma in the name args: fname: the path to the raw data outname: the path to the cleaned data
Source code in tgb/utils/pre_process.py
convert_str2int(in_str)
convert strings to vectors of integers based on individual character each letter is converted as follows, a=10, b=11 numbers are still int Parameters: in_str: an input string to parse Returns: out: a numpy integer array
Source code in tgb/utils/pre_process.py
csv_to_forum_data(fname)
used by thgl-forum dataset convert the raw .csv data to pandas dataframe and numpy array input .csv file format should be: timestamp, head, tail, relation type Args: fname: the path to the raw data
Source code in tgb/utils/pre_process.py
csv_to_pd_data(fname)
currently used by tgbl-flight dataset convert the raw .csv data to pandas dataframe and numpy array input .csv file format should be: timestamp, node u, node v, attributes Args: fname: the path to the raw data
Source code in tgb/utils/pre_process.py
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 |
|
csv_to_pd_data_rc(fname)
currently used by redditcomments dataset convert the raw .csv data to pandas dataframe and numpy array input .csv file format should be: timestamp, node u, node v, attributes Args: fname: the path to the raw data
Source code in tgb/utils/pre_process.py
csv_to_pd_data_sc(fname)
currently used by stablecoin dataset convert the raw .csv data to pandas dataframe and numpy array input .csv file format should be: timestamp, node u, node v, attributes Parameters: fname: the path to the raw data Returns: df: a pandas dataframe containing the edgelist data feat_l: a numpy array containing the node features node_ids: a dictionary mapping node id to integer
Source code in tgb/utils/pre_process.py
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 |
|
csv_to_staticdata(fname, node_ids)
used by tkgl-wikidata and tkgl-smallpedia convert the raw .csv data to pandas dataframe and numpy array for static knowledge edges input .csv file format should be: head, tail, relation type Args: fname: the path to the raw data node_ids: dictionary of node names mapped to integer node ids
Source code in tgb/utils/pre_process.py
csv_to_thg_data(fname)
used by thgl-myket dataset convert the raw .csv data to pandas dataframe and numpy array input .csv file format should be: timestamp, head, tail, relation type Args: fname: the path to the raw data
Source code in tgb/utils/pre_process.py
csv_to_tkg_data(fname)
used by tkgl-polecat convert the raw .csv data to pandas dataframe and numpy array input .csv file format should be: timestamp, head, tail, relation type Args: fname: the path to the raw data
Source code in tgb/utils/pre_process.py
csv_to_wikidata(fname)
used by tkgl-wikidata and tkgl-smallpedia convert the raw .csv data to pandas dataframe and numpy array input .csv file format should be: timestamp, head, tail, relation type Args: fname: the path to the raw data
Source code in tgb/utils/pre_process.py
load_edgelist_datetime(fname, label_size=514)
load the edgelist into a pandas dataframe use numpy array instead of list for faster processing assume all edges are already sorted by time convert all time unit to unix time
time, user_id, genre, weight
Source code in tgb/utils/pre_process.py
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 |
|
load_edgelist_sr(fname, label_size=2221)
load the edgelist into pandas dataframe also outputs index for the user nodes and genre nodes Parameters: fname: str, name of the input file label_size: int, number of genres Returns: df: a pandas dataframe containing the edgelist data
Source code in tgb/utils/pre_process.py
load_edgelist_token(fname, label_size=1001)
load the edgelist into pandas dataframe also outputs index for the user nodes and genre nodes Parameters: fname: str, name of the input file label_size: int, number of genres Returns: df: a pandas dataframe containing the edgelist data
Source code in tgb/utils/pre_process.py
load_edgelist_trade(fname, label_size=255)
load the edgelist into pandas dataframe
Source code in tgb/utils/pre_process.py
load_edgelist_wiki(fname)
loading wikipedia dataset into pandas dataframe similar processing to https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/jodie.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fname |
str
|
str, name of the input file |
required |
Returns: df: a pandas dataframe containing the edgelist data
Source code in tgb/utils/pre_process.py
load_genre_list(fname)
load the list of genres
Source code in tgb/utils/pre_process.py
load_label_dict(fname, node_ids, rd_dict)
load node labels into a nested dictionary instead of pandas dataobject {ts: {node_id: label_vec}} Parameters: fname: str, name of the input file node_ids: dictionary of user names mapped to integer node ids rd_dict: dictionary of subreddit names mapped to integer node ids
Source code in tgb/utils/pre_process.py
load_labels_sr(fname, node_ids, rd_dict)
load the node labels for subreddit dataset
Source code in tgb/utils/pre_process.py
load_trade_label_dict(fname, node_ids)
load node labels into a nested dictionary instead of pandas dataobject {ts: {node_id: label_vec}} Parameters: fname: str, name of the input file node_ids: dictionary of user names mapped to integer node ids Returns: node_label_dict: a nested dictionary of node labels
Source code in tgb/utils/pre_process.py
process_node_feat(fname, node_ids)
- need to have the same node id as csv_to_pd_data
- process the various node features into a vector
- return a numpy array of node features with index corresponding to node id
airport_code,type,continent,iso_region,longitude,latitude type: onehot encoding continent: onehot encoding iso_region: alphabet encoding same as edge feat longitude: float divide by 180 latitude: float divide by 90
Source code in tgb/utils/pre_process.py
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 |
|
process_node_type(fname, node_ids)
- process the node type into integer
- return a numpy array of node types with index corresponding to node id
Source code in tgb/utils/pre_process.py
reindex(df, bipartite=False)
reindex the nodes especially if the node ids are not integers Args: df: the pandas dataframe containing the graph bipartite: whether the graph is bipartite
Source code in tgb/utils/pre_process.py
add_inverse_quadruples(df)
adds the inverse relations required for the model to the dataframe
Source code in tgb/utils/utils.py
add_inverse_quadruples_np(quadruples, num_rels)
creates an inverse quadruple for each quadruple in quadruples. inverse quadruple swaps subject and objsect, and increases relation id by num_rels :param quadruples: [np.array] dataset quadruples, [src, relation_id, dst, timestamp ] :param num_rels: [int] number of relations that we have originally returns all_quadruples: [np.array] quadruples including inverse quadruples
Source code in tgb/utils/utils.py
add_inverse_quadruples_pyg(data, num_rels=-1)
creates an inverse quadruple from PyG TemporalData object, returns both the original and inverse quadruples
Source code in tgb/utils/utils.py
load_pkl(fname)
save_pkl(obj, fname)
save_results(new_results, filename)
save (new) results into a json file :param: new_results (dictionary): a dictionary of new results to be saved :filename: the name of the file to save the (new) results
Source code in tgb/utils/utils.py
set_random_seed(random_seed)
set random seed for reproducibility Args: random_seed (int): random seed
Source code in tgb/utils/utils.py
split_by_time(data)
https://github.com/Lee-zix/CEN/blob/main/rgcn/utils.py create list where each entry has an entry with all triples for this timestep